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N E U R O S C I E N C E

Hybrid neural networks in the mushroom body drive 
olfactory preference in Drosophila
Li-Shan Cheng1†, Ching-Che Charng2†, Ruei-Huang Chen2, Kuan-Lin Feng3,  
Ann-Shyn Chiang2,3,4,5,6,7,8*‡, Chung-Chuan Lo2,3*‡, Ting-Kuo Lee1,3,5*‡

In Drosophila melanogaster, olfactory encoding in the mushroom body (MB) involves thousands of Kenyon cells (KCs) 
processing inputs from hundreds of projection neurons (PNs). Recent data challenge the notion of random PN-to-KC 
connectivity, revealing preferential connections between food-related PNs and specific KCs. Our study further un-
covers a broader picture—an L-shaped hybrid network, supported by spatial patterning: Food-related PNs diverge 
across KC classes, whereas pheromone-sensitive PNs converge on γ KCs. α/β KCs specialize in food odors, whereas γ 
KCs integrate diverse inputs. Such spatial arrangement extends further to the antennal lobe (AL) and lateral horn 
(LH), shaping a systematic olfactory landscape. Moreover, our functional validations align with computational pre-
dictions of KC odor encoding based on the hybrid connectivity, correlating PN-KC activity with behavioral prefer-
ences. In addition, our simulations showcase the network’s augmented sensitivity and precise discrimination 
abilities, underscoring the computational benefits of this hybrid architecture in olfactory processing.

INTRODUCTION
Olfaction is crucial for animal survival and reproductive success, en-
abling the precise distinction between food odors, pheromones, 
and other environmental odors. In the case of a fruit fly, Drosophila 
melanogaster, the mushroom body (MB) governs olfactory associa-
tive learning (1, 2). This process commences with compressing olfactory 
signals from a multidimensional chemical space into a streamlined 
functional coding, orchestrated by ~52 glomeruli within the anten-
nal lobe (AL) (3–6). These signals then diverge into projections, 
transmitting olfactory information from around 100 uniglomerular 
projection neurons (PNs) across the 52 glomeruli to sparsely acti-
vated Kenyon cells (KCs) from an assembly of roughly 2000 KCs 
(7–9). These olfactory cues subsequently acquire functional signifi-
cance through altering connection weights between sparsely activated 
KCs and the MB output neurons (MBONs), thereby triggering ac-
tions through MBONs (10–12). Through processing in the triadic 
PN-KC-MBON hierarchical network, fruit flies distinguish distinct 
chemical compounds, generalize experiences to similar odors, and 
adeptly perceive their environment (13, 14). However, the intricate 
neural circuitry translating odor representation from the AL glomer-
uli to KC coding underpinning the impressive functionality (15, 16) 
of the fruit fly olfactory system remains an enigma.

Earlier investigations introduced two contrasting hypotheses 
concerning PN-to-KC connectivity: random versus structured (17–28). 
The random connectivity hypothesis posits random PN-to-KC 
connections, backed by functional response variations and a lack of 

precise cellular-level circuit specification (20, 24). A specific type of 
KC exhibits varied reaction profiles to the same odor across different 
brains (24). For instance, Caron et al. (20) labeled inputs of 200 KCs 
through dye injection, discovering that no two KCs shared the same 
glomerular input combination. The spatial patterns of activated KCs 
display inconsistencies among animals, implying a random archi-
tecture (24). However, this seemingly random connectivity might 
result from experience-dependent network rewiring (29). For in-
stance, olfactory responses in downstream MBONs exhibit higher 
interindividual correlation than expected by chance (27), and this 
variation diminishes in the rutabaga learning mutant (11).

In contrast, the structured connectivity hypothesis posits a de-
gree of preferential connectivity between PNs and KCs at a popula-
tion level, an arrangement maintained across individuals (17, 18). 
This hypothesis finds support in various observations: (i) Functional 
imaging demonstrated consistent spatial calcium response patterns 
in KCs across diverse individuals for the same odor (25). (ii) An-
atomical studies revealed notable overlap between specific glo-
merular PN axon arbors and dendritic arbors of particular KC 
classes (17, 28). (iii) Neuronal spatial innervation of PNs could be 
clustered based on a metric assessing neuronal distance (30). (iv) 
Mutant flies without normal olfactory co-receptors display compa-
rable glomerular input ratios to KC classes across diverse indivi
duals (21), implying genetically determined PN-to-KC connectivity 
preferences. (v) The food-related PNs form a community structure 
converging on specific KCs, as demonstrated by comparisons mainly 
with specific random networks (22), where a KC claw can randomly 
choose any PN bouton using the FAFB dataset (31).

In addition to food-related PNs, previous anatomical observa-
tions indicate that a broader range of PNs exhibit substantial overlap 
with various KC classes (17). The possibility of additional, undiscov-
ered structures remains an open question. Furthermore, it has yet to 
be confirmed whether these observed anatomical structures corre-
spond to functional responses. To address these questions, we used 
a multimodal approach, integrating multiscale connectome analysis, 
functional experiments, and computational modeling using the hemi-
brain dataset (FlyEM) (32). The dataset offers nearly comprehensive 
synaptic-level connectome data, comprising 106 uniglomerular PNs 
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and 1745 KCs. This heightened connectivity insight permits revisit-
ing whether the calyx (CA) harbors concealed wiring preferences 
and how this structure influences olfactory information processing. 
Our results reveal connection preferences at various levels, from 
connections to spatial arrangements and from synapses to neurites, 
across different neuron types. Specifically, we identified a hybrid 
connectivity pattern between PN clusters and KC classes, character-
ized by varying degrees of convergence and divergence. Our exami-
nation of data incompleteness demonstrated its impact on observing 
this hybrid structure. Furthermore, using a quantification approach, 
we showed that the hybrid network is supported by the spatial ar-
rangement of PN clusters and KC classes, a pattern that extends to 
the AL and lateral horn (LH). We validated this hybrid scheme 
through computer simulations that modeled KC responses to di-
verse odors, comparing these results with in vivo calcium imaging. 
Both spatial innervation analysis and functional predictions were 
reproduced using the FAFB dataset (31). In addition, beyond chem-
ical odor features, we used correlation analysis to link odor tuning 

profiles with behavioral odor preferences, uncovering potential va-
lence associations for each circuitry component. Furthermore, our 
computational model elucidates the potential advantages of this net-
work for olfactory coding. Ultimately, our research highlights intri-
cate connectivity patterns and functional interrelationships within 
the PN-to-KC hybrid network, illuminating the mechanisms guid-
ing odor processing in the insect brain.

RESULTS
Diverse preferences in PN-to-KC connections
To unravel potential connection patterns of the PN-to-KC network 
within the calyx (fig. S1, A and B), we commenced by dissecting 
connectivity using the comprehensive hemibrain dataset (32) (Fig. 1A), 
an electron microscopy–based synaptic connectome derived from a 
female fly. Our examination of connection preferences (G) encom-
passing ~100 uniglomerular PNs related to olfaction and three dis-
tinct KC classes (γ, α′/β′, and α/β; see Fig. 1B) entailed a comparison 

Fig. 1. Preferential connectivity between olfactory PNs and three classes of KCs. (A) The connectivity matrix of PN-to-KC synapses derived from the hemibrain data-
set (32) exhibits an L-shaped configuration. PNs originating from individual glomeruli were categorized into three clusters based on their connection preferences in (B). 
The color coding indicates the number of uniglomerular PNs connected to a particular KC. Note the hybrid pattern in which the PN cluster 3 projects to all KC classes 
(divergent) whereas PN cluster 1 projects predominantly to γ KC (convergent) (figs. S6 and S7) (B) Connection preferences indicated by the Gi score between a KC class 
(i = γ, α′/β′, or α/β) and PNs from a particular glomerulus (see Materials and Methods). The glomeruli are ordered by the Gγ score. Dashed lines indicate the range of Gγ 
scores of the shuffled results between −2 and 2. “#” indicates food-responsive glomeruli (22). “*” indicates pheromone-attractive glomeruli for a female fly (69). (C) Fre-
quency distribution of PN numbers received by each individual neuron in three KC classes (see more details in fig. S2). (D) Analysis of global input preferences revealed by 
PCA on the PN-to-KC connection matrix after global shuffling of upstream PNs for individual KCs within the same class (refer to fig. S9 for detailed information). The color 
indicates the shuffled ratio of each KC class.
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of the real network with randomly shuffled networks. Because each 
glomerulus PN and its boutons may demonstrate disparate connec-
tion capacity (33), our shuffling algorithm preserved the connection 
number between individual PNs and KCs, maintaining the heteroge-
neous counts of KCs connected to a given PN’s bouton across differ-
ent PN types (fig. S1, C and D; see Materials and Methods). The results 
of our analysis brought to light that each KC class exhibits preferred 
connections stemming from a specific subset of PNs (Fig. 1, B and C, 
and fig. S2). Specifically, the γ class features preferred (Gγ > 2) or dis-
favored (Gγ < −2) connections with 36 glomeruli (~69%), the α′/β′ 
class features preferred (Gα′/β′ > 2) or disfavored (Gα′/β′ < −2) connec-
tions with 19 glomeruli (~36%), and the α/β class features preferred 
(Gα/β > 2) or disfavored (Gα/β < −2) connections with 39 glomeruli 
(~75%) (Fig. 1B). Among 52 glomeruli, 39 exhibit both preference 
and disfavor toward specific KC classes, whereas 6 exhibit neither 
preference nor disfavor toward any KC class. Moreover, we observed 
a strong negative correlation between the preference score distribu-
tions of the γ and α/β classes (Pearson’s correlation coefficient = −0.96, 
P  <  0.001). A similar trend emerges when considering connection 
weightings (synapse numbers) (fig. S3).

Next, we classified the 52 glomeruli into three distinct clusters 
based on the preference score Gγ (cluster 1: Gγ ≥ 2; cluster 2: 2 > 
Gγ > −2; cluster 3: Gγ ≤ −2; see Fig. 1B). The bouton connectivity 
of different clusters shows significant differences (fig. S1E), empha-
sizing the importance of maintaining the connection numbers of 
each bouton during the shuffling process. We found that glomeruli 
within the same cluster shared analogous functionality, with 93% 
of cluster 3 glomeruli (labeled by “#”) displaying responsiveness to 
food-related odors (Fig. 1B), consistent with a previous work done 
by Zheng et al. (22). In addition to food-related glomeruli, our anal-
ysis further revealed that more than one-third of glomeruli hold 
strong connection preference for γ KCs, including pheromone-
attractive glomeruli for a female fly (labeled by “*”).

Comparing the hemibrain network with shuffled networks based 
on other random null models (22)—specifically, the random bouton 
model, which hypothesizes that each bouton has equal connection 
potential for KC claws, and the random glomerulus model, which 
assumes the same for each glomerulus—the connection preference 
from PN cluster 1 to γ KCs could not be observed (fig. S4) as these 
models overlook the diversity of bouton connection capacity (fig. S1).

We further explored whether KC subclasses demonstrate similar 
preferences for connections originating from distinct glomeruli. Us-
ing the same analytical methods, we found that specific connection 
preferences exist within several subclasses (fig. S5). Notably, the α′/
β′-ap, α/β-p, α/β-s, and γ-d subclasses were identified as recipients 
of inputs from certain cluster 2 glomeruli, highlighting their unique 
odorant representations. For example, CO2 information is preferen-
tially relayed by the V-glomerulus PNs to the α′/β′-ap1 subclass. 
Conversely, the α′/β′-m subclass primarily receives food-related in-
formation from cluster 3 glomeruli.

Hybrid PN-to-KC networks
Next, upon further examination of the connection matrix derived 
from the hemibrain dataset, we identified a densely connected “L-
shaped” hybrid pattern between PN clusters and KC classes (Fig. 1A 
and fig. S6). From the aspect of PN projection, the PN cluster 3 
exhibits a relatively “divergent” projection to all three KC classes 
whereas PN cluster 1 exhibits a more “convergent” projection pri-
marily targeting the γ KCs. Notably, a distinct pattern emerges when 

examining the matrix from the perspective of KC reception: The γ 
class functions as a “generalist,” receiving inputs from all PN clus-
ters, whereas the α/β class serves as a “specialist,” receiving biased 
inputs only from PN cluster 3 (figs. S2 and S7, A to D).

To verify the hybrid pattern found in the hemibrain, we further 
analyzed the FAFB dataset (31). We observed that PN cluster 1 also 
exhibits high specificity for the γ class. Unexpectedly, PN cluster 3 
shows a convergent projection connection pattern rather than a di-
vergent one (fig. S7, E to H). To address this discrepancy, we ana-
lyzed the number of claws per KC and the total number of sampled 
KCs in both datasets. We found that the claw numbers for α/β and 
α′/β′ KCs are similar; however, γ KCs exhibit ~1.94 times more claws 
contacting uniglomerular PNs in the hemibrain dataset compared to 
the FAFB dataset (fig. S6B). Previous findings also support a higher 
claw count in γ KCs (34). Regarding neuronal composition, the 
number of α/β neurons sampled in the hemibrain dataset is 1.69 
times that in the FAFB dataset (fig. S6C). Both the claw number and 
neuron number in the hemibrain dataset align with previous reports 
(34, 35). These differences in claw counts and neuron number may 
contribute to the reduced divergent projection of PN cluster 3 in the 
FAFB dataset (31).

Zheng et al. (22) also demonstrated higher intracluster glomerular 
correlation of cluster 1 glomeruli (our classification) using conditional 
input analysis, examining the glomerular preferences connecting to 
the same KCs in the hemibrain dataset. By applying Zheng et al.’s 
approach, we reproduced the same result with our PN classification 
(fig. S8A). To verify the inconsistency of interglomerular correlation 
between the hemibrain dataset and the FAFB dataset, we further 
constructed a subsampled connection model of the hemibrain data-
set based on the neuron number and claw count observed in the 
FAFB dataset (fig. S6) (22, 31). We then analyzed connection prefer-
ences and performed the conditional input analysis, as proposed by 
Zheng et al. (22). In both the subsampled hemibrain dataset and the 
FAFB dataset, most of the connection preferences for γ KCs could 
still be observed when preserving the connection numbers of each 
bouton (fig. S6, D and E). On the contrary, the observed higher cor-
relation within cluster 1 glomeruli diminishes (fig. S8B).

Global input preferences of different KC classes
We then calculated input preferences to determine whether the in-
put pattern of a KC class is random or structured by contrasting 
principal components analysis (PCA) results, specifically eigenval-
ues, between the observed network and networks with shuffled con-
nections (20). When more KCs receive similar combinations of 
glomerular inputs than would be expected by random chance, the 
first PC (PC1) of the PN-to-KC network shows higher variance 
compared to a completely shuffled network. Conversely, when KCs 
receive connections randomly from all glomeruli, the maximum ei-
genvalue of the connection matrix is minimized.

As for global input preference, we performed connection shuf-
fling within the whole calyx (see Materials and Methods), regardless 
of their original spatial locations. We executed separate shuffling 
procedures for each of the three KC classes, varying proportions 
from 0 to 100% (Fig. 1D and fig. S9). Our findings disclosed diverse 
degrees of preference across KC classes. For instance, a shuffling with 
ratios of 45% for γ, 45% for α′/β′, and 65% for α/β demonstrated 
comparable variance with fully shuffled groups (Fig. 1D and fig. S9).

Discrepancies between our findings and previous research (20) 
may stem from two factors: (i) the scale of sampling, encompassing 
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both neuron and connection numbers, and (ii) a potential sampling 
bias toward specific KC classes. To ascertain the minimum number 
of neurons essential for detecting input preference, we conducted 
random subsets sampling spanning from 5 to 100% of KCs, calculat-
ing the mean variance of the PC1. Our results underscore that, to 
unveil the distinction between a genuine network and shuffled sub-
networks, at least 100 KCs are needed for α′/β′ and γ, whereas 80 KCs 
suffice for α/β (fig. S10). Furthermore, detecting input preference 
becomes more intricate when connection data for a particular KC 
class remains incomplete. Even with the full collection of γ KCs, in-
put preference was not discerned for γ when only 50% of the con-
nections were obtained. The specific insufficiency also affects the 
analysis of the FAFB dataset as the number of claws in γ KCs is only 
about half of that in the hemibrain dataset (fig. S6). When scruti-
nized with the same sampling count used by Caron et al. (20), the 
subsampled data consistently displayed random-like traits (fig. S11). 
Hence, the inference of a randomly structured calyx network may 
find an explanation in insufficient sampling sizes.

Biased glomerular input of multiglomerular PNs
Next, we expanded our analysis to include multiglomerular PNs 
(MGPNs) to further investigate how olfactory information reaches 
KCs. Of the 164 MGPNs in the hemibrain dataset (32), only 13 con-
nect to KCs, likely excitatory based on their lineage (36), whereas 
most target other neuropils, including the LH (fig. S12, A to F). These 
13 MGPNs are classified into three categories, each showing a prefer-
ence for γ, α′/β′, or α/β KCs (fig. S12I). Notably, all MGPNs primar-
ily receive odor input from cluster 1 glomeruli via both ORNs and 
uniglomerular PNs (fig. S12, J to M), with inputs spanning up to 23 
of the 52 glomeruli. These findings suggest that MGPNs play a criti-
cal role in integrating olfactory responses from cluster 1 glomeruli.

Spatial segregation and organization of 
PN-to-KC connectivity
Previous studies suggested the spatial arrangement of PNs and KCs 
(17), specifically the overlap of food-related PNs with α/β and α′/β′ 
classes (22). However, several intriguing questions remain for fur-
ther investigation: (i) Is the overlap between the α/β and α′/β′ class-
es significant when compared to random networks? (ii) What is the 
spatial relationship between PN clusters and KC classes, particularly 
between cluster 1 PNs and the γ class? (iii) Does the spatial distribu-
tion of neurites and synapses correlate with connection preferences, 
supporting the hybrid connectivity pattern? (iv) If such spatial ar-
rangements exist in CA, do they extend to other neuropils?

To address these questions, we conducted a comprehensive spa-
tial innervation analysis across three levels: neurite, synapse, and 
bouton/claw. Density maps of traced calycal neurites and presyn-
apses revealed that cluster 3 PNs predominantly congregate in the 
ventral-posterior region, whereas cluster 1 PNs are more concen-
trated in the dorsal-anterior domain (Fig. 2, A and C, and fig. S13; 
see Materials and Methods). Similarly, dendritic arbors and post-
synapses of α/β and α′/β′ KC classes are densely distributed in the 
ventral-posterior region, whereas the γ KC class exhibits a more 
uniform distribution (Fig. 2B and fig. S13).

Next, we evaluated the disparity in spatial distribution similarity 
between neuron collections and shuffled networks: For neurite anal-
ysis, we permuted PN and KC classifications while maintaining 
their total counts, and for synapse analysis, we performed categori-
cal shuffling. Spatial innervation preferences and deviations from 

random placement were quantified using z-scores (figs. S14 and S15; 
see Materials and Methods). Our analysis revealed that cluster 1 and 
cluster 3 PNs occupy significantly distinct spatial areas compared to 
shuffled networks (fig. S14, A and B). Similarly, α/β and γ KC spatial 
distributions showed notable deviations from each other (fig. S14, C 
and D). When comparing PN clusters and KC classes, cluster 1 PNs 
preferentially project toward areas populated by γ KCs, whereas clus-
ter 3 PNs target regions with dense dendritic arbors and postsyn-
apses of α/β and α′/β′ KCs (Fig. 2D and figs. S14, E and F, and S15). 
The same results were replicated using the FAFB dataset (31) (fig. 
S16), confirming consistent spatial innervation preferences among 
PNs and KCs across individuals. Furthermore, detailed glomerular 
projection pattern analysis revealed the segregation of cluster 1 and 
cluster 3 PNs not only within the calyx but also in the LH (fig. S17).

We further explored the correlation between spatial innervation 
patterns and connection patterns by comparing observed data with 
shuffled networks. Our results revealed a strong correlation between 
spatial distribution similarity and the connection weight ratio (Fig. 
2E, r2 = 0.96, P < 0.001; see Materials and Methods), as well as be-
tween spatial innervation preferences and connection preferences 
(fig. S18, r2  =  0.857, P  <  0.001). This highlights that connection 
preferences can largely be attributed to spatial innervation prefer-
ences. In addition, the synaptic spatial innervation preferences be-
tween glomerular PNs and KC subclasses (fig. S19) also align closely 
with connection preferences (fig. S5). These findings support Peter’s 
rule, indicating that greater overlap between axonal and dendritic 
arbors increases the likelihood of synaptic connections.

Local input preferences of KC network
The nonrandom spatial distribution of PN-to-KC connections led 
us to determine how spatial innervation patterns affects preference 
for connectivity between the PN boutons and KC claws. Consider-
ing the high energy requirements associated with neurite branching 
(37), it is plausible that KC claws exhibit a tendency to form connec-
tions primarily with adjacent PN boutons forming microglomeruli. 
To facilitate this exploration, we devised a local shuffling algorithm 
calculating the local input preferences of KCs (see Materials and 
Methods), allowing for localized randomization of connections 
within the calyx. This algorithm permits claws of a KC class to inter-
change their upstream boutons, solely if the relative distance is 
shorter than a certain threshold R (fig. S20), preserving the bouton 
connection capacity. Within a 40-μm radius, PC1 (reflecting con-
nectivity variance) witnesses a 30% decrease for α′/β′ and a 50% 
decrease for α/β, respectively (Fig. 2F and fig. S20). In contrast, the 
PC strengths of γ presented a more uniform distribution (Fig. 2F). 
These outcomes underscore that the local distribution of claws is 
intimately linked to the preference of α′/β′ and α/β for receiving 
food signals, whereas this pattern is less prominent for γ, suggesting 
its role as a general input receiver (figs. S2 and S7). Our extensive 
investigation has unveiled a panorama of spatial connectivity pref-
erences, spanning from the neurite to the synapse level.

Segregation of PN terminals across AL, calyx, and LH
To further explore whether the spatial connectivity preferences we 
observed within the calyx extended to two other related neuropils, 
we generated density maps of the three PN clusters in the AL and 
the LH based on their total postsynaptic and presynaptic coordi-
nates, respectively. Notably, our analysis of the postsynaptic density 
map revealed that cluster 3 PNs predominantly occupy the middle 
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glomeruli, whereas cluster 1 PNs exhibit a distribution across the 
lateral glomeruli (Fig. 2A and fig. S21, A and B). Within the LH, the 
presynaptic density maps for cluster 3 PNs coalesce at the center, 
whereas cluster 1 PNs display a bilateral distribution pattern (Fig. 
2A and fig. S21, A and B).

When comparing the spatial innervation preferences at the syn-
aptic level, we observed that cluster 1 and cluster 3 PNs exhibit dis-
tinct spatial distributions from each other in both the LH and AL 
(figs. S17 and S21, C to F). An interesting observation emerged 
when we compared the preference scores for each glomerulus of 
PNs between cluster 1 and cluster 3—an anticorrelation is evident in 

both the AL and LH, consistent with our observations in the calyx 
(fig. S21, E to G). This pattern of spatial connectivity preferences 
appears to be a consistent and intriguing feature of neural connec-
tivity across these related neuropils. A closer examination of the 
relationship between a glomerulus’ preferences for a specific PN 
cluster in both the calyx and LH revealed strong and consistent cor-
relations (Fig. 2G and fig. S21H). These patterns are mirrored when 
comparing the calyx to the AL, suggesting a general phenomenon 
(Fig. 2G and fig. S21H). For example, when comparing the spatial 
innervation preference between DC3 PNs and all cluster 1 PNs, the 
preference is high across all the neuropils.

Fig. 2. Preferential spatial connectivity between PN clusters and KC classes. (A and B) Spatial distribution of neurites and PN-to-KC synapses from each PN cluster (A) 
and KC class (B) shown by color code. AL, antennal lobe; LH, lateral horn; CA, calyx. (C) Quantitative spatial distribution of PN neurites. The dorsal/ventral (D/V) compart-
ments are separated by the red dashed line in (A). (D) Distribution similarity between presynapse and postsynapse in PN-to-KC connections compared with shuffled data 
(n = 30, error bars: ± SD). (E) Correlation between the distribution similarity of PN-to-KC synapses and their input connection weight ratio (see Materials and Methods; fig. 
S2E) quantified by the difference between the real network and shuffled networks, as shown by the linear regression plot (r2 = 0.96, P < 0.001). (F) Analysis of local input 
preferences quantified by PCA after local random shuffling of KC claw inputs. Colors indicate different shuffling radii (refer to fig. S20 for detailed information). (G) Correla-
tion of spatial innervation preference between each glomerulus and each PN cluster by the comparison between the real network and shuffled networks (see Materials 
and Methods), as shown by the linear regression plot (for the comparison between CA and LH, r2 = 0.61, P < 0.001; for the comparison between CA and AL, r2 = 0.45, 
P < 0.001).
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Furthermore, it is worth noting that cluster 3 PNs not only dis-
play this connectivity pattern but are also found to receive inputs 
from the same type of sensilla (fig. S22) (38). This remarkable uni-
formity across various olfactory centers underscores the presence of 
an inherited wiring pattern within the calyx connectome. These 
findings hold the potential to provide valuable insights into the fun-
damental mechanisms governing olfactory encoding.

Functional correlates of calycal connection preferences
To assess the functional implications of PN connection preferences 
within diverse olfactory information centers, we embarked on an 
inquiry to determine whether AL glomeruli within the same PN 
clusters display similar input responses to odors bearing comparable 
chemical attributes and similar output patterns to KCs for further 
processing. From the output pattern to KC perspective, our results 
suggested higher intracluster glomerular correlations among the 
three PN clusters (figs. S8C and S22). From the odor input perspec-
tive, each glomerulus receives input from distinct types of olfactory 
receptor neurons (ORNs), thereby inheriting specific response pro-
files (5, 39). Before being relayed to other neuropils, these odor inputs 
are further processed by AL local neurons (40). Previous studies have 
revealed the clustered responsiveness of ORNs to aliphatic or aromatic 
(arom) odorants (3, 41, 42). In our investigation, we scrutinized ORN 
responses to pure odor stimuli sourced from the DoOR database (43). 
This enabled us to pinpoint the most favored ligand candidate for 
each ORN, indicative of the odor eliciting the most robust response. 
Unexpectedly, our observations unveiled an augmented sensitivity of 
cluster 3 glomeruli to short-chain esters featuring one- to two-carbon 
chains, hinting at an unexpected interplay between functionality and 
convergent glomerular architecture (Fig. 3A). In contrast, the most 
favored ligand candidates for glomeruli in clusters 1 and 2 do not 
exhibit clear chemical resemblances. Instead, clusters 1 and 2 manifest 
broad responsiveness to alcohols, aromatics, esters, and aliphatics. 
These intriguing findings suggest that the PN-to-KC network’s con-
nection preferences exhibit a pronounced association with the pro-
cessing of olfactory information tied to specific functional groups, 
rather than encompassing a universal sensitivity to all foraging scenarios.

To further investigate the correlation in responsiveness between 
glomeruli, we delved into the composition of the top 10 most re-
sponsive molecules of ORNs for each glomerulus. The outcomes 
indicated a heightened prevalence of esters within cluster 3 (fig. 
S23). Furthermore, we undertook a correlation analysis to quantify 
the likeness in ORN tuning for ~700 monomolecular odors. We 
identified a group of glomeruli, primarily from cluster 3 rather than 
other clusters, that exhibit notably high responsiveness similarity 
(Fig. 3B). Notably, rearranging the connection matrix based on 
functional correlations still captures the L-shaped preference con-
nections (fig. S24).

Validating the prediction of odor responses 
from connectivity
Next, we combined functional data from the DoOR database (43) 
with connectivity insights from the hemibrain dataset (32) to vali-
date our predictions regarding how different KC classes respond 
to specific odors. Simulations revealed distinct odor preferences 
among KC classes, with short-chain esters showing a preference for 
α/β and α′/β′-m classes (fig. S25). To confirm our model’s accuracy, 
we conducted calcium imaging experiments with eight odors, tar-
geting specific MB lobe regions corresponding to different KC classes 

(fig. S26, A and B). The observed calcium responses closely aligned 
with our predictions, demonstrating consistent functional differ-
ences among KC classes (Fig. 3C) and across individual flies (fig. 
S26, C and D). In addition, in the γ lobe, different subregions exhib-
ited consistent responses to most tested odors (fig. S26, E and F; see 
Discussion). Furthermore, predictions based on the FAFB dataset 
were highly consistent with those from the hemibrain dataset, 
whereas shuffled networks failed to replicate the observed function-
al disparities, highlighting the predictive strength of our integrated 
model (fig. S27). In addition, we observed that these response differ-
ences between β and γ classes remained consistent across varying 
odor concentrations, ranging from 10−6 to 10−2 dilutions (fig. S28). 
This aligns with dose-dependent functional responses observed in 
ORNs (41) and PNs (44), as well as the spatial KC responses in the 
calyx (25) and memory-guided behaviors (13). The strong correla-
tion between our experimental and simulation data was evident 
(r2 = 0.57, as shown in Fig. 3D). These findings collectively under-
score the critical role of preferential connectivity between PNs and 
KCs in shaping sensory representation and conferring chemical 
sensitivity at the population level.

Correlation between behavioral preferences and PN 
clusters/KC classes
We further explored the relationship between behavioral prefer-
ences, glomerular activation patterns, and PN-to-KC connectivity. 
Cluster 3 glomeruli, associated with food-related odors, and cluster 
1 glomeruli, responsive to ring-structured odor molecules, appear 
to be linked to innate approach or avoidance behaviors. To investi-
gate the correlation between valence and PN clusters, we analyzed 
differences in glomerular counts between cluster 1 and cluster 3 
across different rankings. Our analysis revealed that aversive odors 
predominantly activate cluster 1 glomeruli, whereas attractive odors 
favor cluster 3 glomeruli. For neutral-valenced odors, we hypothe-
sized that they either balance activation across aversive and attrac-
tive glomeruli or preferentially activate glomeruli with no wiring 
preferences. The results supported both hypotheses: Neutral odors 
activated glomeruli more evenly between cluster 1 and cluster 3 
(Fig. 3E), and their top responsive glomerulus exhibited no wiring 
preferences (Fig. 3F). Both neutral and non-neutral odors showed 
significant differences from random models.

Using functional response data for 46 odors [selected based on 
behavioral experiments (45)] from the DoOR database, Spearman’s 
correlation analysis revealed a strong negative correlation between 
behavioral preferences and cluster 1 glomeruli (Fig. 3G). Total activ-
ity across the three PN clusters, weighted by correlation coefficients, 
showed a significant correlation with behavioral odor preferences 
(fig. S29A, rs = 0.34, P < 0.05). Individual glomeruli within clusters 
displayed differing valences, with some cluster 1 glomeruli positively 
correlating with behavioral preferences (Fig. 3H). Summing weighted 
glomerular activity further strengthened the correlation with pref-
erences (Fig. 3I, rs = 0.59, P < 0.001). These behavioral preferences 
extend to KCs (fig. S29, B to E). Among KC subclasses, α/β-m and 
α′/β′-m showed positive correlations, whereas α/β-s and γ-m exhib-
ited negative correlations (fig. S29D). Total weighted activity among 
KC subclasses also demonstrated a significant correlation with be-
havioral preferences (fig. S29E, rs = 0.37, P < 0.01). Together, our 
analysis suggests that behavioral odor preferences can be predicted 
by integrating an ORN-PN-KC diagram derived from connectomic 
and functional data.
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Fig. 3. Preferential functional connectivity between PNs and KCs. (A) Most sensitive odorant per glomerulus, classified into three clusters (colors), based on output 
correlations [fig. S22, DoOR database (43)]. N.A., not applicable. (B) Correlation matrix of ORN odorant responses. Top rows show three preference clusters (Fig. 1C) and 
glomerular output clusters (A). (C) Experimental validation of predicted calcium responses (ΔF/F) for eight odorants at MB lobes (top: raw data, gray). Predicted responses 
used the DoOR database (43) and hemibrain dataset (32) (Wilcoxon signed-rank test: *P < 0.05 and **P < 0.01; error bars: mean + SD, n = 10). n.s., not significant. (D) Cor-
relation between simulated and experimental calcium responses. Regression plot shows response differences between β versus γ lobes (black) and β′-m versus β′-ap 
(orange) in (C) (r2 = 0.57, P < 0.01). Markers represent different odor types. (E) Count difference of glomeruli between clusters 1 and 3 across top-activated rankings of 
odors with valences (45) (Kruskal-Wallis test with Bonferroni correction: *P < 0.05). (F) Normalized no preference glomeruli counts among top-activated rankings for 
neutral versus non-neutral (attractive + aversive) odors and random models (n = 100 for random models; for neutral and non-neutral odor lists, see Materials and Meth-
ods; Kruskal-Wallis test with Bonferroni correction: #P < 0.05 for neutral odors compared with others; ***P < 0.001 for random models compared with others). (G and 
H) Correlation of behavioral preferences with glomerular activation by cluster (G) and individual glomeruli (H) (Spearman’s correlation). (I) Weighted summed glomerular 
activity ranks correlate with behavioral preferences (46 odors; Spearman’s test, rs = 0.59, P < 0.001).
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Hybrid network architecture diversifies olfactory 
coding strategies
The validation of predictive odor responses strongly supports the 
concept of a hybrid network configuration, characterized by distinct 
synaptic preferences and input divergence among KC classes. Aver-
sive odors appear to activate more γ KCs via cluster 1 PNs (Fig. 3E), 
which exhibit higher connectivity selectivity (fig. S7A) and form the 
L-shaped configuration shown in Fig. 1A. This suggests that γ KCs 
may have enhanced acuity for odors (type 1) that exclusively acti-
vate cluster 1 glomeruli. To test this, we designed artificial odors by 
selectively activating specific sets of glomeruli (seven glomeruli) 
within each PN cluster, guided by preference scores. Connection 
weights were incorporated into our simulations and normalized 
based on the observed input weights for each KC relative to the total 
PN input (9, 46). Simulations revealed that α/β KCs excel in detect-
ing type 3 odors, which activates cluster 3 glomeruli, whereas γ KCs 
are more sensitive to type 1 odors (Fig. 4A). In addition, the diver-
gent synaptic contacts of cluster 3 PNs and the convergent projec-
tions of cluster 1 PNs are integrated in γ KCs, positioning them as 
general input receivers. In natural environments, flies encounter 
diverse odors and odor blends, highlighting the importance of cod-
ing capacity for odor differentiation. To evaluate this, we crafted 
odors by randomly selecting glomeruli across clusters and exam-
ined KC Hamming code dimensionality, using binary representa-
tions for activated and inactivated states (47–49). PCA revealed that 
γ KCs have significantly higher coding capacity compared to α/β 
and α′/β′ KCs (Fig. 4B). In summary, the L-shaped hybrid network 
architecture provides a range of advantages: α/β KCs are highly sen-
sitive to type 3 odors, whereas γ KCs excel in detecting type 1 odors. 
Moreover, this architecture maintains high coding capacity of γ 
KCs, enabling refined odor discrimination in complex environments.

DISCUSSION
The MB serves as a pivotal hub in processing a vast array of olfac-
tory cues, with specific emphasis on critical food and reproductive 
scents. Our detailed analysis of the connections between PNs and 
KCs within the MB’s calyx has illuminated an intricate hybrid architec-
tural design that seamlessly accommodates these functional roles. 

Within this L-shaped hybrid architecture, cluster 1 PNs, including 
those sensing pheromones, converge primarily on γ KCs, whereas 
cluster 3 PNs, associated with food-related odors, project to all KC 
classes in a divergent manner. From the perspective of the KCs, α/β 
KCs act as specialists, primarily processing food odors, whereas γ 
KCs function as generalists, capable of processing a broader range of 
odors, including those related to food. This precise wiring specificity 
emerges from the spatial convergence of PN boutons and the ar-
rangement of KC claws, strategically positioned within specific 
regions of the calyx as suggested previously (17, 18). It is worth 
highlighting that this distinct connectivity motif observed between 
cluster 1 and cluster 3 PNs is consistently maintained across the AL, 
calyx, and LH. The informative simulations, driven by these established 
connections, provided valuable insights into the diverse responses 
of KCs to various odors. These simulations notably emphasized the 
shared sensitivities exhibited by cluster 3 PNs. Beyond this, the sim-
ulations underscored two discernible strategies: γ KCs adopt a more 
stochastic wiring pattern, promoting the capacity of odor coding, 
whereas α/β KCs leverage a stereotypical architecture to enhance 
detection sensitivity, particularly attuned to food odors. Further-
more, our investigation also revealed an intermediate profile in α′/β′ 
KCs, with α′/β′-m resembling α/β KCs, favoring short-chain esters, 
whereas α′/β′-ap seems displaying a preference for aroms. The cor-
relation analysis between glomerular activation patterns and KC 
activity reveals that aversive odors preferentially activate more clus-
ter 1 glomeruli, which are then transferred to γ-m and α/β-s KCs. In 
contrast, attractive odors activate more cluster 3 glomeruli, which 
are transferred to α/β-m and α′/β′-m KCs, suggesting potential va-
lence associations with both PNs and KCs. In essence, our study 
provides a remarkable glimpse into the intricate hybrid wiring 
strategy harnessed by the Drosophila MB. This strategy effectively 
marries acuity and capacity, enabling the MB to adeptly process a 
diverse array of olfactory cues, including those pivotal for survival 
and reproduction.

Our findings on the hybrid network structure depend on the com-
pleteness of the hemibrain connectome data. Disparities in data size, 
even when using similar statistical approaches, can lead to different 
conclusions: random-like PN-to-KC patterns (20), a tightly correlated 
core community composed of food-related PNs converging on α′/β′ 

Fig. 4. Hybrid network architecture diversifies olfactory coding strategies. (A) Olfactory acuity among KC classes to artificially generated odors in three odor types by 
numerical simulation (see Materials and Methods; Friedman test with Dunn’s post hoc test for pairwise group comparisons; for each comparison, the P value was < 0.001). 
The inset illustrates the calculation of odor acuity, which is the change in KC activation ratio over different odor concentrations. a.u., arbitrary units. (B) The coding capac-
ity among KC classes for artificially generated odors is defined by dimensionality (see Materials and Methods; one-way ANOVA with Tukey’s post hoc test for pairwise 
group comparisons; for each comparison, the P value was < 0.001). The inset shows a simplified depiction of coding capacity measured by dimensionality.
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and α/β (22) and hybrid networks (current study). By downsampling 
according to the data size that previously used (20, 22), we have repro-
duced the main results. Specifically, when we simulated the early dye-
filling study by downsampling the data size to only 200 neurons across 
three KC classes with partial connections, we reproduced the random-
like configuration reported by Caron et al. (20). We found that at least 
100 KCs for a single KC class with more complete connection data are 
necessary to reveal the broader global input preferences of any par-
ticular KC class.

In addition, our results indicated a higher interglomerulus input 
correlation for cluster 1 (nonfood) glomeruli, mediated by uniglo-
merular PNs, compared to cluster 3 (food-related) glomeruli in the 
hemibrain dataset. By downsampling the hemibrain data to match 
the neural composition of the FAFB dataset, which includes fewer 
α/β neurons and only half the number of γ KC claws receiving input 
from uniglomerular PNs, we reproduced the diminished interglom-
erulus correlation for cluster 1 glomeruli as observed by Zheng et al. 
(22). Moreover, the MGPNs, which integrate cross-glomerular in-
formation, also preferentially receive input from cluster 1 glomeruli. 
Together, these findings suggest a more intricate interaction net-
work involving cluster 1 glomeruli.

Our results further demonstrated that the hybrid network con-
figuration stems from the spatial innervation patterns of PNs and 
KCs. PN cluster 1 (nonfood) projects densely onto the dorsal calyx, 
where more γ KCs innervate compared to α/β KCs. In contrast, PN 
cluster 3 (food-related) concentrates more on the ventral side, where 
both γ KCs, α′/β′, and α/β KCs are distributed. This pattern is 
consistently supported by both the FAFB and hemibrain datasets. 
Moreover, these distinct innervation patterns of PN clusters extend 
beyond the calyx to the AL and the LH, suggesting differentiated 
olfactory processing of different odor classes across neuropils along 
the olfactory pathways. These quasiparallel pathways may interact 
more in the downstream networks, forming a more complex archi-
tectural picture (36).

Transitioning to the functional aspect, earlier research hinted at a 
lack of stereotyped responsive profiles within α/β-c KCs across dif-
ferent individual animals at the single cell level (24). However, func-
tional results showed predictable tuning features of KCs in both 
axonal bundle regions (11) and soma areas (25). Our model predic-
tion followed by calcium imaging validation uncovered the preferen-
tial functional connectivity at population level. Therefore, even if 
stereotyped tuning profiles are absent for individual KCs, it is still 
possible that the soma distribution (25) and tuning profiles of KCs, as 
well as those of MBONs (11) maintain preferences across individuals.

Moreover, although a random connection model can generate 
conserved clustered odor representations (23) and stereotyped 
readout (50) by the MBONs, the divergent tuning profiles of differ-
ent KC classes to aromatic versus aliphatic odors at population 
level rely on, at least, class-based connection preferences. Our study 
not only solidifies the notion of odor response stereotypy but also 
serves to validate predictions pertaining to specific odors, exempli-
fied by odors like EP and PA that induce notably stronger responses 
in α/β KCs compared to their γ counterparts—a trend consistently 
affirmed through calcium imaging across multiple adult flies, with 
high correlations among fly individuals. This line of evidence led us 
to suggest that the connection preferences discerned from the 
hemibrain dataset (32) extracted from a single fly likely extend 
beyond the individual and encapsulate broader patterns within the 
fly population. Moreover, our analysis of calcium responses across 

γ lobe subregions revealed strong overall correlations, confirming 
the robustness of our observations, with some odor-specific varia-
tions. For example, γ2 and γ5 showed minimal correlation for 
benzaldehyde but high correlations for most other odors.

In addition, by integrating functional data (43), behavioral data 
(45), and connectomic data (32), we evaluated the valence of each cir-
cuitry component and predicted behavioral odor preferences. Aver-
sive odors predominantly activate cluster 1 glomeruli, with more 
information transferred to γ KCs. For α/β-s KCs, input is received 
primarily via glomeruli such as DL1, VM7v, and VM7d, all of which 
have negative coefficients, inheriting negative behavioral responses. 
Although PNs inherit tuning profiles from ORNs (6), some exhibit 
divergent activity patterns (40). Also, complex interglomerular inter-
actions exist (51). Therefore, further investigations are required to 
fully understand these complex interglomerular interactions and 
their impact on odor processing and behavioral responses.

The preferential connectivity between PNs from cluster 1 glomer-
uli and γ KCs sheds light on the critical role played by these connec-
tions in shaping behaviors related to courtship (52, 53). Conversely, 
the α/β KCs, by virtue of their convergent input, might sacrifice some 
resolution, yet the presence of specific connections significantly bol-
sters their ability to detect food-related odors. Furthermore, the clus-
tered responses enhance the ability for odor generalization (23). This 
intricate hybrid network architecture can be construed as a more re-
fined model, finely attuned to satisfy the fly’s complex demands in 
terms of sensory sensitivity and discrimination, particularly when it 
comes to processes like learning and memory. In essence, our find-
ings underscore the exquisite balance between sensitivity and dis-
crimination achieved through the hybrid network configuration, 
offering insights into how neural architecture can be optimized to 
meet distinct functional demands.

The functionality of both artificial and biological neural net-
works hinges upon their underlying network architectures, playing 
pivotal roles in tasks ranging from discrimination to generalization 
(15, 54). Notably, recent computational endeavors have drawn in-
triguing parallels between the intricate circuitry of the MB and the 
concept of hashing—a mechanism that transforms the multidimen-
sional chemical space into sparse codes, thereby facilitating process-
es like novelty detection and generalization (49, 55). In the realm of 
neural networks, the role of randomness in shaping connectivity is 
critical as random networks tend to offer heightened coding dimen-
sionality (56), thereby potentially optimizing the discrimination ca-
pacity of the system.

Although we focused on the three major KC classes and several 
subclasses, they could be further subdivided into more families that 
play distinct roles in olfactory learning and memory processes 
(10, 35, 57–60). In larvae, the MB consists only of γ KC, rendering 
our PN classification based on KC classes inapplicable. Although 
further categorization of PNs into different clusters is possible in 
larval studies, it is beyond our current analysis approach. The exact 
PN connectivity preferences specific to these KC families remain 
unexplored. The role of the anterior paired lateral (APL) neurons 
innervated the entire MB in suppressing KC sparse coding using γ-
aminobutyric acid is not fully understood and whether this suppres-
sion follows a random pattern is uncertain (7, 61). In addition, our 
simulations highlight the L-shaped configuration’s acuity for pure 
odors activating few glomeruli within one cluster at low concentra-
tions (5). However, as concentrations rise or for odor blends, activa-
tion patterns grow more complex (62, 63), requiring further study. 
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Moreover, it remains unclear whether sister PNs originating from 
the same glomerulus contribute to the diverse sparse coding pat-
terns of KCs, as observed in the calycal spatial map of pheromone-
sensing PNs in cockroaches (64,  65). Addressing these aspects 
would provide a more comprehensive understanding of the intricate 
information processing within the MB circuitry.

MATERIALS AND METHODS
Data sampling
This research is mainly based on the hemibrain dataset v. 1.2.1 
(32, 66), a fruit fly’s hemibrain connectome with image resolution 
down to the synaptic level. The connection between a PN and a KC 
was determined by at least three synapses. Because we focused on 
investigating the olfactory encoding mechanism of D. melanogaster, 
only 52 types of olfaction-related glomerular PNs were selected. We 
excluded PNs from VP-type glomeruli and KCs without receiving 
any connection from the uniglomerular PNs from the 52 glomeruli. 
Eventually, we selected 106 uniglomerular PNs and 1745 KCs on the 
right side of the brain from the hemibrain dataset (32). KCs can be 
categorized into three major classes (35)—γ, α′/β′, and α/β—or sub-
divided into subclasses (32) including γ-m, γ-super, γ-d, α′/β′-ap1, 
α′/β′-ap2, α′/β′-m, α/β-m, α/β-c, α/β-p, and α/β-s. Considering that 
the synapses of the PN-to-KC network demonstrate high plasticity 
and may differ among individuals (29), we defined the connection 
between a single PN and KC as the connectivity unit (neuronal lev-
el). The selected PN-to-KC connectivity is shown in Fig. 1A.

Connection preference evaluation
The preference score Gk for connections from PNs of a glomerulus g 
to a KC k is defined as

where Pobserved
gk

 is the ratio (0 to 1) of the connection from a given 
glomerulus g to the KC class k. Pobserved

gk
 is normalized such that ∑

gP
observed
gk

= 1 for each k. Prandom
gk

 measures the same quantity but 
for the randomized glomerulus-to-KC network. Specifically, the 
targeted KCs are randomly chosen for every glomerulus, but the 
number of targeted KCs remains the same. The process is repeated 
1000 times to calculate the mean innervating ratio (Prandom

gk
) and 

the SD σrandom
gk

. Gk within the interval of ±2 is considered as no 
significantly preferred projection from the glomerulus g to the 
class-k KCs.

Global shuffling for connections
We compared the observed data [the hemibrain dataset (32)] with 
1000 random datasets generated by the shuffling algorithm. The 
shuffled ratio, x%, is given from 0 to 100%. For the full shuffling 
process (x = 100), all glomerular PNs were reassigned with down-
stream KCs at random, maintaining the total connection numbers 
of each glomerulus and each KC. The effect of the full shuffling pro-
cess was identical to the shuffling algorithm described in Caron 
et al. (20). For partial shuffling, only x% of connections in the hemi-
brain dataset were randomly selected and shuffled.

Local shuffling for connections
Compared to the global shuffling, we further set spatial constraints. 
After identifying the bouton/claw structure by DBSCAN (see Materi-
als and Methods), we measured the distance between every two 
claws and exchanged the upstream boutons if the distance of the 
claws were shorter than R. The same process was repeated for 1000 
times. The total numbers of connections, boutons, and claws were 
preserved under local shuffling. For the schematic plot, please 
see fig. S20.

Connectivity correlation quantification
We applied Pearson correlation analysis to measure the downstream 
connection similarity of each two glomeruli. The connection profile 
of a single glomerulus is regarded as a vector, which is mapped into 
a 1745-dimensional space (the total number of KCs). The Pearson 
correlation is calculated by

where NG∕g

k
 is the total connected PN number between Gth/gth 

glomerulus and kth KC, and NG∕g  is the average downstream con-
nection number of Gth/gth glomerulus. To visualize the convergent 
glomerular clusters, we implemented Ward hierarchical clustering 
using Python’s Scikit-Learn library.

Input preference quantification
To estimate the degree of input preference of each KC class, the 
correlation-based PCA was implemented by calculating the eigen-
values of the Pearson correlation matrix of the glomerulus-to-KC 
connection matrix using Python’s Numpy library. The set of PCs is a 
linear transformation of the connection matrix that generates maxi-
mum variance, and the percent variance of the first PC (PC1) is cor-
related with the diversity of the input combination. If more KCs 
receive similar glomerular input combinations than the random 
connectivity hypothesis suggests, the explained variance ratio of the 
PC1 of the glomerulus-to-KC network would be larger than that of 
a completely shuffled network. We independently shuffled the con-
nections within each of the three KC classes, varying the shuffled 
ratio from 0 to 100%. The degree of preference is defined as the 
minimal shuffled ratio x% that satisfies

where PC1
x%

 and σ1
x%

 are the mean and SD of the explained variance 
of PC1 calculated from 1000 partial shuffled connectivity trials.

Categorical shuffling for neurites, bouton/claw, 
and synapses
We used a categorical shuffling algorithm to explore whether differ-
ent classes of KCs and clusters of PNs occupy distinct regions within 
the calyx, across neurite, bouton/claw, and synapse levels. For neu-
rites, we shuffled the classification of neurons (the class of a KC or 
the cluster of a PN) while maintaining the total number of neurons 
in each category. For example, when examining KC classes, we ran-
domly reassigned the KC class for each KC while keeping the overall 
number of neurons in each class constant. For the bouton/claw 

Gk =
Pobserved
gk

− Prandom
gk

σrandom
gk

, k = γ, α� ∕β�, and α∕β (1)

CG,g =
�

k

NG
k
−NG

�∑
K

�
NG

K
−NG

�2

N
g

k
−Ng

�∑
K

�
N

g

K
−Ng

�2 , G, g =1∼52

(2)

x =min
(
PC1

x%
−PC1

100%
≥
(
σ1
x%

+σ1
100%

)
∕2 ∣ x∈[0, 100]

)
(3)
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aspect, we shuffled the identity of each claw/bouton while preserv-
ing the total number of claws/boutons associated with each neuron. 
Similarly, for synapses, we shuffled the identity of each synapse 
while maintaining the total number of synaptic sites associated with 
each neuron. In particular, we focused on the hypothetical scenario 
where neuron A establishes connections with neuron B at only one 
specific site. To account for this, we treated all synapses between 
neurons A and B as a single unit during the permutation process, 
ensuring that the overall number of synaptic sites remained consis-
tent while introducing random shuffling.

Odor selection for functional response
We collected the response profiles of 52 olfaction-related olfactory 
receptors (ORs) from the DoOR database (43). Each glomerulus 
connects with a distinct type of ORNs, and most ORNs only express 
a single type of OR (67). The DoOR dataset includes the OR’s re-
sponse to 693 odors, which is normalized by the following equation

where A is the response activity. Fresting is derived from the response 
to mineral oil. Factivated is derived from the response to other odors. 
The missing values in DoOR are manually converted to “0” in 
our study.

Simulation for odor response in MB lobe
The odor response of the MB lobe is closely correlated with the ac-
tivity of its upstream glomeruli and the strength of their connec-
tions. Each KC class has a distinct average claw number, and KCs 
with a higher claw number demonstrate a higher activation thresh-
old (9, 46). As a result, the KC response level has a higher correlation 
with the percentage of claws than the absolute number of claws that 
receive inputs. Therefore, we assumed that the KC response level is 
associated with the activated ratio of KCs, denoted as Rgk and given by

where Wgk represents the number of connected claws between glom-
erulus, g, and a single KC, k. Rgk is a normalized value, which is di-
vided by the total claw number of each KC.

The simulated odor response of the MB lobe, represented as ΔF
F

, 
is determined by the summation of inputs

where N represents the total number of KCs in a specific class, and 
Cg is the activity of the upstream glomerulus, g. On the basis of the 
one-to-one mapping structure, we assumed that the glomerular ac-
tivity is proportional to the activity of its upstream ORNs, and the 
level of ORN odor-evoked activity refers to the data from the DoOR 
database (43).

Spatial distribution similarity analysis
To compute distribution similarity, the first step was to collect all the 
skeleton points, center points of boutons/claws, and synapse coordi-
nates according to their KC classes or PN clusters. Then, we attained 
the spatial distribution by kernel density estimation, using Python’s 
SciPy library. Next, we calculated the Jensen-Shannon divergence 

(JSD) to estimate the distribution similarity using the SciPy package 
as well (68). JSD’s advantages include (i) boundedness and (ii) sym-
metry. Therefore, it helped us normalize the similarity among differ-
ent distributions. JSD is defined by

where P and Q are the distribution of p and q. S is the distribution 
similarity. The spatial distribution preference is evaluated by the dif-
ference in distribution similarity between the original data and the 
shuffled ones.

Bouton/claw identification
To identify the middle-scale anatomic structures—boutons for a PN 
and claws for a KC—we used DBSCAN from Python’s SciPy library. 
The minimum number of points was set to 3, which is consistent 
with our connection threshold, and the radius was set to 1.6 μm 
because one bouton connecting to several KC claws should not be 
identified as several boutons. After manual inspection, we estab-
lished a distance threshold of 2.8 μm. If the distance between the 
centers of two boutons/claws from a PN/KC was less than 2.8 μm, 
these two structures merged into a single entity automatically. The 
example results are presented in fig. S1B.

Weight ratio calculation
The input weight ratio was calculated based on the connection 
weight from a PN cluster to a KC, divided by the total connection 
weight for the KC from all PNs. Specifically, the input weight ratio is 
given by the formula

where RPN,i is the input weight ratio of a KC class receiving from a 
cluster i, Ni is the total number of PNs in cluster i, C is the number 
of clusters, and wi,n is the connection weight of a PN to a KC.

As for the output weight ratio, it was calculated using the 
connection weight for a PN to a KC class, divided by the total 
connection weight for a PN to all KC classes. The value is defined 
as follows

where RKC,j is the output weight ratio of a PN cluster to a KC class j, 
Nj is the total number of KCs in KC class j, K is the number of KC 
classes, and wj,n is the connection weight of a PN to a KC.

A =
(
Factivated−Fresting

)
∕Fresting (4)

Rgk =
Wgk∑
kWgk

(5)

ΔF

F
=

∑
kCgRgk

N
(6)

JSD(P‖Q) = 1

2

�
p(x)log

⎡
⎢⎢⎣

p(x)
p(x)+q(x)

2

⎤
⎥⎥⎦
+

1

2

�
q(x)log

⎡
⎢⎢⎣

q(x)
p(x)+q(x)

2

⎤
⎥⎥⎦

(7)

S = 1 − JSD (8)

RPN,i =

Ni∑
n=1

wi,n

C∑
i

Ni∑
n=1

wi,n

(9)

RKC,j =

Nj∑
n=1

wj,n

K∑
j

Nj∑
n=1

wj,n

(10)
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Correlation of weight ratio and synaptic 
distribution preference
To evaluate the correlation between the connection weight ratio and 
the spatial distribution, we calculated the differences in the connec-
tion weight ratio (for each KC class to each PN cluster) between the 
original network and the shuffled connection ratio. Next, we calcu-
lated the differences in the spatial distribution preference by subtract-
ing the shuffled distribution similarity from the original distribution 
similarity. Last, the correlation between the difference in the connec-
tion weight ratio and the difference in distribution similarity was esti-
mated by performing linear regression using Python’s SciPy package.

Weight normalization for generated odor simulation
Previous studies showed that the KC activation is correlated with 
the percentage of the claws that receive inputs (9, 46). Therefore, we 
normalized the connection matrix WPN>KC by the column. As a re-
sult, each connection weight between a PN to a KC is given by

where n is the total number of PN and wPNi>KCj represents the origi-
nal connection weight (synapse number) of PN i to KC j.

Simulation for artificial odors
To investigate the impact of connection preferences on KC coding, 
we generated artificial odors that selectively activate glomeruli with-
in the same cluster for acuity experiments and across multiple clus-
ters for coding capacity experiments. Here, we randomly chose m 
candidate glomeruli from n glomeruli and defined the activity APN 
of the PNs from the chosen glomeruli as

otherwise

where Codor is set from 7 to 11 to observe how odor stimulation 
strength affects KC activation. The unit of Codor is arbitrary. Note 
that the absolute value of Codor is not important as it can always be 
compensated by the scaling factor and activation threshold intro-
duced below. The range of Codor is used to simulate the firing rate 
dependency of PNs to the odor concentration. For odors that only 
activate cluster 1 glomeruli, we defined the odors as type 1 odors. 
For each odor type, we generated 1000 different odors removing the 
same activated glomerular combination.

Simulation for KC representation of artificial odors
To investigate how the connection preference affects KC coding, we 
used the artificially generated odors with the observed connection 
matrix derived from the hemibrain dataset (32) to analyze the KC 
activation profile. The activity of KC is given by

where θ represents the activity threshold, which was set to 1. AKC is 
the vector representing KC activity for each odor filtered through 
the ReLU function. APN is derived from the artificial odors men-
tioned above. sscaling is a scaling factor that was set to 0.3. WPN>KC 

corresponds to the connection matrix. Here, we carefully adjusted 
sscaling and θ to achieve a KC activation ratio of ~10% when the Codor 
is 8. This ratio is in line with a previous experimental study (44).

Odor selection for behavioral analysis
We analyzed top aversive odors (1-octen-3-ol, acetophenone, lin-
alool, 2-methylphenol, benzaldehyde, and 1-octanol), top attractive 
odors (γ-butyrolactone, 2,3-butanedione, hexanoic acid, pentanoic 
acid, 3-methylthio-1-propanol, and 4-ethylguaiacol), and the most 
neutral odors (ethyl hexanoate, β-citronellol, ammonium hydrox-
ide, pentanal, ethanol, acetaldehyde, nerol, linoleic acid, E3-hexenol, 
2-propenal, E2-hexenol, terpinolene, nonanoic acid, E2-hexenal, 
and γ-octalactone) (45). For each odor type, we calculated the 
counts of glomeruli in each cluster and the no wiring preference 
group across the top 1 to 5 rankings.

Correlation analysis for behavioral odor preference
For a total of 46 odors (45) [excluding six odors lacking sufficient 
functional data from the DoOR database (43)], we obtained tuning 
profiles from the DoOR database after subtracting the baseline re-
sponse to oil. We then calculated the Spearman’s correlation for each 
cluster and each glomerulus with the behavioral preference ranking 
(45). Using the correlation coefficients as weighting parameters, we 
computed the summed activity by applying these weights to the tun-
ing profiles. The summed activity is given by

where 𝐴 represents the activity, 𝑐 denotes different clusters or glom-
eruli, and 𝑟s ​ is the Spearman’s correlation coefficient.

For KC activation, we multiplied the activity by the connection 
matrix and applied a threshold to activate only the top 10% of KCs. 
We then calculated the Spearman’s correlation coefficient. For the 
summed weighted activity, the same procedures were applied as for 
PN clusters and glomeruli.

Acuity analysis
To evaluate olfactory acuity for different odor classes, we first as-
sessed the activation ratio of KCs. The activation ratio was calculat-
ed by dividing the number of activated KCs by the total number of 
KCs in response to each odor stimulus.

Next, we analyzed the relationship between the odor stimulation 
strength (Codor) and the activation ratio by performing linear regres-
sion using Python’s SciPy library. This regression analysis allows us 
to estimate the slope, which represents the change in the activation 
ratio per unit change in odor stimulation strength (Codor). The odor 
acuity for a KC class to an odor is defined by the slope of the regres-
sion line.

Dimensionality analysis
To compute the dimensionality of KC representation, we performed 
PCA decomposition for the KC response matrix. The dimensional-
ity is defined by (56)

where λ is the eigenvalue. For hamming code capacity calculation, 
all positive AKC values were set to 1.

wPNi>KCj

� =
wPNi>KCj

n∑
i=1

wPNi>KCj

(11)

APNi = Codor (12)

APNi = 0 (13)

AKC =Max
(
0, sscalingAPN WPN>KC−θ

)
(14)

Atotal =
∑

ACrs

dim
�
AKC

�
=

�∑
λ
�2

∑
λ2

(15)
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Fly strains
All fly stocks were reared on standard cornmeal- yeast- agar medium 
at 25° or 18°C with around 70% humidity under a 12- hour light/12- 
hour dark cycle. The following fly lines were used in the current 
study: OK107- Gal4 drives the expression of all three classes of MB 
neurons, VT57244- Gal4 (v200970, Vienna Drosophila Resource 
Center) for the α′/β′ neurons, and UAS- GCaMP7f (79031, Bloom-
ington Drosophila Stock Center) flies carrying a transgene for a ge-
netically encoded calcium sensor.

Chemicals and stimulation
For olfactory stimulation, ethyl propionate (EP; CAS: 105- 37- 3, 
Sigma- Aldrich), isopentyl acetate (IA; CAS: 123- 92- 2, Sigma- 
Aldrich), octyl acetate (OA; CAS: 112- 14- 1, Sigma- Aldrich), pentyl 
acetate (PA; CAS: 628- 63- 7, Sigma- Aldrich), benzaldehyde (BA; 
CAS: 100- 52- 7, Scharlau), anisole (ANS; CAS: 100- 66- 3, Scharlau), 
pyrrolidine (PYR; CAS: 123- 75- 1, Sigma- Aldrich), ethanol (EtOH; 
CAS: 64- 17- 5, Honeywell), and 11- cis- vaccenyl acetate (cVA; CAS: 
6186- 98- 7, Cayman Chemical) were used. Odors were diluted in 
mineral oil. For cVA, the concentration was 10−3 (v/v), whereas for 
the other odors, the concentration was 10−6 (v/v) in the single con-
centration test. Concentration gradient experiments were adjusted 
from 10−6 to 10−2 (v/v). The diluted solution was packed in glass 
tubes at a volume of 10 ml per tube. Using a computer to control the 
olfactometer, the odor was introduced into a continuous flow of air 
for the antennae to detect. Stimulus duration was 10 s. Airstream 
continued for the entire experiment time.

Confocal imaging and imaging processing
The sample brains were imaged by a Zeiss LSM 710 or LSM 780 
confocal microscope with a 40× C- Apochromat water immersion 
lens. Images were scanned under the following setting: resolution of 
512 × 512 pixels, scanning speed of 7, and line average of 2 in ZEN 
software (Zeiss). Max- p rojection images and single- p lane images 
were formatted using ZEN software (Zeiss).

In vivo GCaMP functional imaging and imaging processing
Flies expressing UAS- GCaMP6 in α′/β′ KC and UAS- GCaMP7 in 
whole KC were mounted on a droplet- shaped sheet, with a win-
dow opened on the head capsule, and then adult hemolymph- like 
(AHL) saline [108 mM NaCl, 5 mM KCl, 2 mM CaCl2, 8.2 mM 
MgCl2, 4 mM NaHCO3, 1 mM NaH2PO4, 5 mM trehalose, 10 mM 
sucrose and 5 mM Hepes (pH 7.5), and 265 mosmol/kg H2O) added 
immediately.

Recording of changes in GCaMP intensity before and after odor 
stimulations was performed on Zeiss LSM 780 with a 40× C-
Apochromat water immersion lens. Images were acquired at a reso-
lution of 512 × 512 pixels, captured at 2 frames/s for a total of 60 
frames. For odor stimulation, odorants were delivered during 10 to 
20 s for odor stimulation in each 30-s trial. Each odor was presented 
with an interstimulus interval of 1 min.

A 488-nm light-emitting diode light source was placed be-
neath the chamber to provide red-light stimulations. MB lobes 
were imaged in an area of the dorsal surface of the fly brain (fig. 
S26). The regions of interest of α/β KC and γ KC were circled at 
the tip of the lobe, whereas α′/β′-m KC and α′/β′-ap KC were 
circled according to the position of the nerve distribution pro-
vided by neuPrint (66).

Data analysis for functional imaging
The raw fluorescence signals were converted to ΔF/F, where F is the 
averaged baseline fluorescence value of 10 s before the stimulation 
onset, and ΔF is the difference between the highest signal and the 
mean. Peaks of postresponse were taken as maximum ΔF/F within 
the 10 s following light onset, compared using the nonparametric 
Wilcoxon signed-rank test.

Statistics
Statistical analysis was performed by Microsoft Excel, GraphPad 
Prism, and Python. Regression analysis was used to capture the 
correlation between two variables. The nonparametric Wilcoxon 
signed-rank test was performed to compare the calcium responses 
between two lobes.

For non-normal distributed group data, Friedman test with 
Dunn’s post hoc test was used. Otherwise, we performed one-way 
analysis of variance (ANOVA), with Tukey’s post hoc test. The sig-
nificance thresholds are indicated by *P  <  0.05, **P  <  0.01, and 
***P < 0.001. All data are presented by mean values ± SD.

Supplementary Materials
This PDF file includes:
Supplementary Methods
Figs. S1 to S29
Tables S1 to S10
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